If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x-3x^2-100=0
a = -3; b = 60; c = -100;
Δ = b2-4ac
Δ = 602-4·(-3)·(-100)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-20\sqrt{6}}{2*-3}=\frac{-60-20\sqrt{6}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+20\sqrt{6}}{2*-3}=\frac{-60+20\sqrt{6}}{-6} $
| 2(v-7)-6v=2 | | -5n-8(1+17n)=-8 | | b+2/8=b+5/12 | | |x-9|=20 | | 14=5(w+2)-7w | | 6+2/8=b+5/12 | | -1x-4=-15 | | 9x+5=5x+23 | | 7x(9+2)=(x9)+(x2) | | 3,5x+15=8 | | X+7=2x-16 | | (8x-23)+(8-2x)=90 | | 13=-5x+2(x-4) | | 2p-4(6-2p)=5(p-5))-44 | | |12x^2+7x-10|=0 | | 4x=-20-10=70 | | 2w+2(w=3)=54 | | 2=5(v+4)-7v | | 9s=-3(-4s-9) | | f(5)=-6(5)-2 | | 26x-156=1144 | | F(5)=-6x-2 | | 6x+29=x | | (4+5)/5=y | | -7=10x-4-7x | | X=10.5+2x^ | | x-4/3=3x-1/4 | | 51c+47c+43c=180 | | 5y=|2+3y|-6 | | 9/4a+2=1/2 | | 100=37.69+0.50x | | 8y−7=5y+11 |